Kunihiro Takeoka
Kunihiro Takeoka
Home
Posts
Publications
Projects
Contact
Light
Dark
Automatic
1
Revisiting Prompt Engineering: A Comprehensive Evaluation for LLM-based Personalized Recommendation
This work revisits the role of prompt engineering in personalized recommendation tasks. The paper comprehensively evaluates various …
Genki Kusano
,
Kosuke Akimoto
,
Kunihiro Takeoka
PDF
LLM-based Query Expansion Fails for Unfamiliar and Ambiguous Queries
The paper investigates limitations of LLM-based query expansion methods when facing ambiguous or unfamiliar queries. Through …
Kenya Abe
,
Kunihiro Takeoka
,
Makoto P. Kato
,
Masafumi Oyamada
PDF
Relevance, Diversity, and Exclusivity: Designing Keyword-augmentation Strategy for Zero-shot Classifiers
This paper explores how to balance relevance, diversity, and exclusivity in keyword-based zero-shot classifiers. The authors propose an …
Taro Yano
,
Kunihiro Takeoka
,
Masafumi Oyamada
PDF
Context Quality Matters in Training Fusion-in-Decoder for Extractive Open-Domain Question Answering
Kosuke Akimoto
,
Kunihiro Takeoka
,
Masafumi Oyamada
PDF
Cite
Low-resource Taxonomy Enrichment with Pretrained Language Models
Kunihiro Takeoka
,
Kosuke Akimoto
,
Masafumi Oyamada
PDF
Cite
Quality Control for Hierarchical Classification with Incomplete Annotations
Masafumi Enomoto
,
Kunihiro Takeoka
,
Yuyang Dong
,
Masafumi Oyamada
,
Takeshi Okadome
Cite
Learning with Unsure Responses
We propose a novel alogrithm for utilizing
unsure
labels for instances from annotators to find optimal parameters quickly.
Kunihiro Takeoka
,
Yuyang Dong
,
Masafumi Oyamada
PDF
Cite
DOI
Meimei: An Efficient Probabilistic Approach for Semantically Annotating Tables
Kunihiro Takeoka
,
Masafumi Oyamada
,
Shinji Nakadai
,
Takeshi Okadome
PDF
Cite
DOI
Cite
×